BIBLIOTHEQUE CENTRALE
DĂ©tail de l'auteur
Auteur Mneimné Rached |
Documents disponibles écrits par cet auteur
Affiner la recherche Interroger des sources externes
Réduction des endomorphismes : Tableaux de young cone nilpotent représentations des algèbres de lie semi simples / Mneimné Rached
Titre : Réduction des endomorphismes : Tableaux de young cone nilpotent représentations des algèbres de lie semi simples Type de document : texte imprimé Auteurs : Mneimné Rached, Auteur Editeur : Calvage & mounet Année de publication : 2006 Importance : 376p Format : 24X16 cm ISBN/ISSN/EAN : 978-2-916352-01-5 Langues : Français (fre) Mots-clés : algèbres Index. décimale : 510 Résumé : La réduite de Jordan et les tableaux de Young constituent le thème principal du présent ouvrage. La maîtrise de la réduction s'acquiert par un retour attentif et critique sur les fondements, depuis les valeurs propres jusqu'à la géométrie des classes de similitude. Ainsi l'apparente complexité du cas nilpotent s'estompe-t-elle lorsque l'on se ramène à la combinatoire élémentaire des tableaux de Young. Le chemin est alors libre vers l'apprentissage des représentations de l'algèbre de Lie des matrices d'ordre deux de trace nulle, véritable génome de la théorie des représentations des algèbres de Lie semi-simples. Les liens subtils entre la réduction de Jordan et les sl2-triplets sont alors mis à contribution pour comprendre la structure des algèbres de Lie semi-simples, leurs sous-algèbres de Cartan et les systèmes de racines qui leur sont associés. Les représentations irréductibles de dimension finie de ces algèbres de Lie sont étudiées et apparaissent alors comme un développement naturel de la réduction simultanée.
vignetteRéduction des endomorphismes : Tableaux de young cone nilpotent représentations des algèbres de lie semi simples [texte imprimé] / Mneimné Rached, Auteur . - [S.l.] : Calvage & mounet, 2006 . - 376p ; 24X16 cm.
ISBN : 978-2-916352-01-5
Langues : Français (fre)
Mots-clés : algèbres Index. décimale : 510 Résumé : La réduite de Jordan et les tableaux de Young constituent le thème principal du présent ouvrage. La maîtrise de la réduction s'acquiert par un retour attentif et critique sur les fondements, depuis les valeurs propres jusqu'à la géométrie des classes de similitude. Ainsi l'apparente complexité du cas nilpotent s'estompe-t-elle lorsque l'on se ramène à la combinatoire élémentaire des tableaux de Young. Le chemin est alors libre vers l'apprentissage des représentations de l'algèbre de Lie des matrices d'ordre deux de trace nulle, véritable génome de la théorie des représentations des algèbres de Lie semi-simples. Les liens subtils entre la réduction de Jordan et les sl2-triplets sont alors mis à contribution pour comprendre la structure des algèbres de Lie semi-simples, leurs sous-algèbres de Cartan et les systèmes de racines qui leur sont associés. Les représentations irréductibles de dimension finie de ces algèbres de Lie sont étudiées et apparaissent alors comme un développement naturel de la réduction simultanée.
vignetteExemplaires (1)
Code-barres Cote Support Localisation Section DisponibilitĂ© 09/146168 L/510.913 Livre Bibliothèque Centrale indéterminé Exclu du prĂŞt