BIBLIOTHEQUE SNVSTU
Détail de l'éditeur
|
|
Documents disponibles chez cet éditeur
Faire une suggestion Affiner la recherche Interroger des sources externes
Titre : Freshwater and marine ecology Type de document : texte imprimé Auteurs : Ulrich sommer, Auteur Editeur : Springer international pulishing AG Année de publication : 2023 Importance : 435p. Présentation : ill. Format : 24cm x 16cm ISBN/ISSN/EAN : 978-3-031-42458-8 Langues : Anglais (eng) Langues originales : Anglais (eng) Index. décimale : 577 Ecologie Note de contenu : .
Freshwater and Marine Ecology is an introduction to the field of aquatic ecology, integrating the conceptually and methodologically widely overlapping fields of limnology and biological oceanography. It is structured like most textbooks of general ecology, leading from more elemental entities (individuals having to cope with their environment) to increasingly overarching entities, from populations over communities and ecosystems to the biogeochemistry of the entire planet and, finally, an overview over the major human impacts on the aquatic components of the earth system. The book provides examples for all major theoretical concepts of general ecology while the usual ecology textbooks have a strong terrestrial bias and rely only on few aquatic examples. This book takes the contrasting approach, motivated by the fact the fact that life originated from aquatic systems and that surface waters cover more than 70% of the Earth's surface. The choice of studies used as examplesin Freshwater and Marine Ecology provides a balanced mix of freshwater and marine studies, of field observations, experimental and modeling studies. The readers are confronted with very recent work leading to the forefront of contemporaneous research but also with classic studies which laid the foundations of theory development in the field. Freshwater and Marine Ecology is a comprehensive text ideally serving for undergraduate courses in biological oceanography, limnology, andEn ligne : https://books.google.dz/books/content?id=GNsN0AEACAAJ&printsec=frontcover&img=1& [...] Freshwater and marine ecology [texte imprimé] / Ulrich sommer, Auteur . - [S.l.] : Springer international pulishing AG, 2023 . - 435p. : ill. ; 24cm x 16cm.
ISBN : 978-3-031-42458-8
Langues : Anglais (eng) Langues originales : Anglais (eng)
Index. décimale : 577 Ecologie Note de contenu : .
Freshwater and Marine Ecology is an introduction to the field of aquatic ecology, integrating the conceptually and methodologically widely overlapping fields of limnology and biological oceanography. It is structured like most textbooks of general ecology, leading from more elemental entities (individuals having to cope with their environment) to increasingly overarching entities, from populations over communities and ecosystems to the biogeochemistry of the entire planet and, finally, an overview over the major human impacts on the aquatic components of the earth system. The book provides examples for all major theoretical concepts of general ecology while the usual ecology textbooks have a strong terrestrial bias and rely only on few aquatic examples. This book takes the contrasting approach, motivated by the fact the fact that life originated from aquatic systems and that surface waters cover more than 70% of the Earth's surface. The choice of studies used as examplesin Freshwater and Marine Ecology provides a balanced mix of freshwater and marine studies, of field observations, experimental and modeling studies. The readers are confronted with very recent work leading to the forefront of contemporaneous research but also with classic studies which laid the foundations of theory development in the field. Freshwater and Marine Ecology is a comprehensive text ideally serving for undergraduate courses in biological oceanography, limnology, andEn ligne : https://books.google.dz/books/content?id=GNsN0AEACAAJ&printsec=frontcover&img=1& [...] Réservation
Réserver ce document
Exemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 25/326626 L/577.031 Livre Bibliothèque Sciences de la Nature et de la Vie et Science de la Terre de l'Univers indéterminé Disponible 25/326624 L/577.031 Livre Bibliothèque Sciences de la Nature et de la Vie et Science de la Terre de l'Univers indéterminé Disponible 25/326625 L/577.031 Livre Bibliothèque Sciences de la Nature et de la Vie et Science de la Terre de l'Univers indéterminé Disponible
Titre : Machine learning for earth sciences:Using python to solve geological problems Type de document : texte imprimé Auteurs : Maurizio petrelli, Auteur Editeur : Springer international pulishing AG Année de publication : 2023 Collection : Text Book Importance : 209p. Présentation : ill. Format : 23cm x 15cm ISBN/ISSN/EAN : 978-3-031-35116-7 Langues : Anglais (eng) Langues originales : Anglais (eng) Index. décimale : 551 Géologie, météorologie, hydrologie générale Résumé : .
This textbook introduces the reader to Machine Learning (ML) applications in Earth Sciences. In detail, it starts by describing the basics of machine learning and its potentials in Earth Sciences to solve geological problems. It describes the main Python tools devoted to ML, the typical workflow of ML applications in Earth Sciences, and proceeds with reporting how ML algorithms work. The book provides many examples of ML application to Earth Sciences problems in many fields, such as the clustering and dimensionality reduction in petro-volcanological studies, the clustering of multi-spectral data, well-log data facies classification, and machine learning regression in petrology. Also, the book introduces the basics of parallel computing and how to scale ML models in the cloud. The book is devoted to Earth Scientists, at any level, from students to academics and professionals.Note de contenu : .
Table of Contents:
Chapter 1: Introduction to Machine Learning
Chapter 2: Setting Up Your Python Environments for Machine Learning
Chapter 3: Machine Learning Workflow
Chapter 4: Unsupervised Machine Learning Methods]
Chapter 5: Clustering and Dimensionality Reduction in Petrology
Chapter 6: Clustering of Multi-Spectral Data
Chapter 7: Supervised Machine Learning Methods
Chapter 8: Classification of Well Log Data Facies by Machine Learning
Chapter 9: Machine Learning Regression in Petrology
Chapter 10: Parallel Computing and Scaling with Dask
Chapter 11: Scale Your Models in the Cloud
Chapter 12: Introduction to Deep LearningEn ligne : https://m.media-amazon.com/images/I/41UsHTtY0IL._SY445_SX342_FMwebp_.jpg Machine learning for earth sciences:Using python to solve geological problems [texte imprimé] / Maurizio petrelli, Auteur . - [S.l.] : Springer international pulishing AG, 2023 . - 209p. : ill. ; 23cm x 15cm. - (Text Book) .
ISBN : 978-3-031-35116-7
Langues : Anglais (eng) Langues originales : Anglais (eng)
Index. décimale : 551 Géologie, météorologie, hydrologie générale Résumé : .
This textbook introduces the reader to Machine Learning (ML) applications in Earth Sciences. In detail, it starts by describing the basics of machine learning and its potentials in Earth Sciences to solve geological problems. It describes the main Python tools devoted to ML, the typical workflow of ML applications in Earth Sciences, and proceeds with reporting how ML algorithms work. The book provides many examples of ML application to Earth Sciences problems in many fields, such as the clustering and dimensionality reduction in petro-volcanological studies, the clustering of multi-spectral data, well-log data facies classification, and machine learning regression in petrology. Also, the book introduces the basics of parallel computing and how to scale ML models in the cloud. The book is devoted to Earth Scientists, at any level, from students to academics and professionals.Note de contenu : .
Table of Contents:
Chapter 1: Introduction to Machine Learning
Chapter 2: Setting Up Your Python Environments for Machine Learning
Chapter 3: Machine Learning Workflow
Chapter 4: Unsupervised Machine Learning Methods]
Chapter 5: Clustering and Dimensionality Reduction in Petrology
Chapter 6: Clustering of Multi-Spectral Data
Chapter 7: Supervised Machine Learning Methods
Chapter 8: Classification of Well Log Data Facies by Machine Learning
Chapter 9: Machine Learning Regression in Petrology
Chapter 10: Parallel Computing and Scaling with Dask
Chapter 11: Scale Your Models in the Cloud
Chapter 12: Introduction to Deep LearningEn ligne : https://m.media-amazon.com/images/I/41UsHTtY0IL._SY445_SX342_FMwebp_.jpg Réservation
Réserver ce document
Exemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 25/326669 L/551.221 Livre Bibliothèque Sciences de la Nature et de la Vie et Science de la Terre de l'Univers indéterminé Disponible 25/326667 L/551.221 Livre Bibliothèque Sciences de la Nature et de la Vie et Science de la Terre de l'Univers indéterminé Disponible 25/326668 L/551.221 Livre Bibliothèque Sciences de la Nature et de la Vie et Science de la Terre de l'Univers indéterminé Disponible


