Titre : |
Théorie des ensembles |
Type de document : |
texte imprimé |
Auteurs : |
Jean-Louis Krivine, Auteur |
Editeur : |
Paris : Cassini |
Année de publication : |
2007 |
Importance : |
274p |
Format : |
23.5X15.5 CM |
ISBN/ISSN/EAN : |
978-2-84225-096-6 |
Langues : |
Français (fre) Langues originales : Français (fre) |
Mots-clés : |
Théorie,ensembles |
Index. décimale : |
512 |
Résumé : |
Née il y a un siècle de l'esprit de Cantor, la théorie des ensembles fascine toujours les mathématiciens. En leur offrant un cadre axiomatique universel, elle témoigne de l'unité profonde des mathématiques. Ce livre expose les bases d'une théorie qui est devenue un vaste domaine de recherches, aux applications variées.
Une présentation des axiomes usuels de la théorie des ensembles de Zermelo-Freenkel (ZF), ainsi que des notions fondamentales d'ordinal et de cardinal, amène naturellement à la question essentielle : quels axiomes raisonnables peut-on ajouter à la théorie ZF sans la rendre contradictoire ? C'est le problème de la consistance relative.
Dans la première partie, on résout ce problème pour l'axiome du choix et l'hypothèse du continu, suivant la méthode des modèles intérieurs. On y trouvera également une preuve inédite et particulièrement élégante du second théorème d'incomplétude de Gôdel.
La seconde partie est consacrée à la méthode du forcing et à ses applications ; entre autres le célèbre résultat de Cohen sur l'indépendance de l'hypothèse du continu, et le théorème de Solovay sur la non-contradiction de l'axiome : "Tout ensemble de réels est mesurable".
Complété par une importante série d'exercices avec des indications détaillées, cet ouvrage s'adresse aussi bien aux étudiants de master et de doctorat qu'aux enseignants et chercheurs en mathématiques, ainsi qu'à tous ceux qu'intéressé la philosophie des mathématiques. |
Note de contenu : |
Sommaire
Modèles intérieurs
L'Axiomes de Zermelo-Fraenkel
Ordinaux, cardinaux
L'axiome de fonction
Le schéma de réflexion
L'ensemble des formules |
Théorie des ensembles [texte imprimé] / Jean-Louis Krivine, Auteur . - Paris : Cassini, 2007 . - 274p ; 23.5X15.5 CM. ISBN : 978-2-84225-096-6 Langues : Français ( fre) Langues originales : Français ( fre)
Mots-clés : |
Théorie,ensembles |
Index. décimale : |
512 |
Résumé : |
Née il y a un siècle de l'esprit de Cantor, la théorie des ensembles fascine toujours les mathématiciens. En leur offrant un cadre axiomatique universel, elle témoigne de l'unité profonde des mathématiques. Ce livre expose les bases d'une théorie qui est devenue un vaste domaine de recherches, aux applications variées.
Une présentation des axiomes usuels de la théorie des ensembles de Zermelo-Freenkel (ZF), ainsi que des notions fondamentales d'ordinal et de cardinal, amène naturellement à la question essentielle : quels axiomes raisonnables peut-on ajouter à la théorie ZF sans la rendre contradictoire ? C'est le problème de la consistance relative.
Dans la première partie, on résout ce problème pour l'axiome du choix et l'hypothèse du continu, suivant la méthode des modèles intérieurs. On y trouvera également une preuve inédite et particulièrement élégante du second théorème d'incomplétude de Gôdel.
La seconde partie est consacrée à la méthode du forcing et à ses applications ; entre autres le célèbre résultat de Cohen sur l'indépendance de l'hypothèse du continu, et le théorème de Solovay sur la non-contradiction de l'axiome : "Tout ensemble de réels est mesurable".
Complété par une importante série d'exercices avec des indications détaillées, cet ouvrage s'adresse aussi bien aux étudiants de master et de doctorat qu'aux enseignants et chercheurs en mathématiques, ainsi qu'à tous ceux qu'intéressé la philosophie des mathématiques. |
Note de contenu : |
Sommaire
Modèles intérieurs
L'Axiomes de Zermelo-Fraenkel
Ordinaux, cardinaux
L'axiome de fonction
Le schéma de réflexion
L'ensemble des formules |
| |