BIBLIOTHEQUE ST
Détail de l'éditeur
|
Documents disponibles chez cet éditeur
![](./images/expand_all.gif)
![](./images/collapse_all.gif)
![](./images/orderby_az.gif)
Titre : Advanced Fluid Mechanics and Heat Transfer for Engineers and Scientists Type de document : texte imprimé Auteurs : Meinhard T. Schobeiri, Auteur Editeur : Springer Année de publication : 2022 Importance : 584 p Présentation : couv.ill.fig.tab.réfe Format : 23.5 x15.5 cm ISBN/ISSN/EAN : 978-3-030-72927-1 Prix : 16 500,00 DA Note générale : Introduction.- Vector and Tensor Analysis, Applications.- Kinematics of Fluid Motion.- Differential Balances in Fluid Mechanics.- Integral Balances in Fluid Mechanics.- Inviscid Potential Flows.- Viscous Laminar Flow.- Laminar-Turbulent Transition.- Turbulent Flow, Modeling.- Free Turbulent Flow.- Boundary Layer Aerodynamics.- Boundary Layer Heat Transfer.- Compressible Flow.- Flow Measurement Techniques, Calibration.- Heat Transfer. Langues : Anglais (eng) Résumé : The current book, Advanced Fluid Mechanics and Heat Transfer is based on author's four decades of industrial and academic research in the area of thermofluid sciences including fluid mechanics, aero-thermodynamics, heat transfer and their applications to engineering systems. Fluid mechanics and heat transfer are inextricably intertwined and both are two integral parts of one physical discipline. No problem from fluid mechanics that requires the calculation of the temperature can be solved using the system of Navier-Stokes and continuity equations only. Conversely, no heat transfer problem can be solved using the energy equation only without using the Navier-Stokes and continuity equations. The fact that there is no book treating this physical discipline as a unified subject in a single book that considers the need of the engineering and physics community, motivated the author to write this book. It is primarily aimed at students of engineering, physics and those practicing professionals who perform aero-thermo-heat transfer design tasks in the industry and would like to deepen their knowledge in this area. The contents of this new book covers the material required in Fluid Mechanics and Heat Transfer Graduate Core Courses in the US universities. It also covers the major parts of the Ph. D-level elective courses Advanced Fluid Mechanics and Heat Transfer that the author has been teaching at Texas A& M University for the past three decades. Advanced Fluid Mechanics and Heat Transfer for Engineers and Scientists [texte imprimé] / Meinhard T. Schobeiri, Auteur . - Switzerlan, Switzerlan : Springer, 2022 . - 584 p : couv.ill.fig.tab.réfe ; 23.5 x15.5 cm.
ISBN : 978-3-030-72927-1 : 16 500,00 DA
Introduction.- Vector and Tensor Analysis, Applications.- Kinematics of Fluid Motion.- Differential Balances in Fluid Mechanics.- Integral Balances in Fluid Mechanics.- Inviscid Potential Flows.- Viscous Laminar Flow.- Laminar-Turbulent Transition.- Turbulent Flow, Modeling.- Free Turbulent Flow.- Boundary Layer Aerodynamics.- Boundary Layer Heat Transfer.- Compressible Flow.- Flow Measurement Techniques, Calibration.- Heat Transfer.
Langues : Anglais (eng)
Résumé : The current book, Advanced Fluid Mechanics and Heat Transfer is based on author's four decades of industrial and academic research in the area of thermofluid sciences including fluid mechanics, aero-thermodynamics, heat transfer and their applications to engineering systems. Fluid mechanics and heat transfer are inextricably intertwined and both are two integral parts of one physical discipline. No problem from fluid mechanics that requires the calculation of the temperature can be solved using the system of Navier-Stokes and continuity equations only. Conversely, no heat transfer problem can be solved using the energy equation only without using the Navier-Stokes and continuity equations. The fact that there is no book treating this physical discipline as a unified subject in a single book that considers the need of the engineering and physics community, motivated the author to write this book. It is primarily aimed at students of engineering, physics and those practicing professionals who perform aero-thermo-heat transfer design tasks in the industry and would like to deepen their knowledge in this area. The contents of this new book covers the material required in Fluid Mechanics and Heat Transfer Graduate Core Courses in the US universities. It also covers the major parts of the Ph. D-level elective courses Advanced Fluid Mechanics and Heat Transfer that the author has been teaching at Texas A& M University for the past three decades. Réservation
Réserver ce document
Exemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 23/323162 L/620.092 Livre Bibliothèque Science et Technologie indéterminé Exclu du prêt 23/323163 L/620.092 Livre Bibliothèque Science et Technologie indéterminé Disponible 23/323164 L/620.092 Livre Bibliothèque Science et Technologie indéterminé Disponible
Titre : An Inquiry-Based Introduction to Engineering Type de document : texte imprimé Auteurs : Michelle Blum, Auteur Editeur : Springer Année de publication : 2022 Importance : 316 p Présentation : couv.ill.fig.tab.ind Format : 24.5x16 cm ISBN/ISSN/EAN : 978-3-030-91470-7 Prix : 16 500,00 DA Note générale :
xiii
Contents
Part I Being an Effective Student
1
Achieving Success in Engineering
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Setting Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Changing Attitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Changing Effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Changing Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Extracurricular and Student Involvement Opportunities . . . . . . . . . 8
1.6 Information to Know . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7 Develop a Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
End of Chapter Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
IBL Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2
Teaching and Learning Approaches
. . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 Teaching Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Learning Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Improving the Learning Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
End of Chapter Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
IBL Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3
Essential Skills for Learning
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1 Semester and Course Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Lecture Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Learning During Lecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Reading to Learn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Preparing for Exams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6 Successfully Taking Exams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.7 Time Organization and Management . . . . . . . . . . . . . . . . . . . . . . . . 36
xiv
3.8 The Student/Professor Relationship . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.9 Working with Your Peers and in Teams . . . . . . . . . . . . . . . . . . . . . . 40
3.10 Benefits of Institutional Resources . . . . . . . . . . . . . . . . . . . . . . . . . 42
End of Chapter Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
IBL Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4
Understanding Yourself and Others
. . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1 Understanding Yourself . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Understanding Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Personal Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
End of Chapter Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
IBL Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Part II The Engineering Profession
5
The Engineering Profession
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1 Engineering Disciplines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Engineering Societies
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3 Engineering Degrees and Registrations . . . . . . . . . . . . . . . . . . . . . . 62
5.4 ABET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.5 Engineering Employment Opportunities and Functions . . . . . . . . . 66
End of Chapter Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
IBL Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6
Engineering Problem-Solving
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.1 Types of Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Problem-Solving Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3 Problem-Solving Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
End of Chapter Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
IBL Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7
Engineering Design and Experiments
. . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.1 The Engineering Design Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2 Experimental Design Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
End of Chapter Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
IBL Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Contents
xv
8
Engineering Ethics
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.1 Making Ethical Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.2 Ethics as a Student . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.3 Ethics as an Engineer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
End of Chapter Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
IBL Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
9
Engineering Communications
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
9.1 Written Communication 1: Technical Writing . . . . . . . . . . . . . . . . . 91
9.2 Written Communication 2: Professional Writing . . . . . . . . . . . . . . 96
9.3 Visual Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.4 Oral Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9.5 Team Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
End of Chapter Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
IBL Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Part III Engineering Fundamental Parameters
10
Dimensions and Units
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
10.1 Fundamental Dimensions and Units . . . . . . . . . . . . . . . . . . . . . . . 133
10.2 Primary and Secondary Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
10.2.1 Primary Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
10.2.2 Secondary Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
10.3 Dimensional Analysis and Homogeneity . . . . . . . . . . . . . . . . . . . . 137
10.4 Unit Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
10.5 Significant Digits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
10.6 Scientific Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
10.7 Estimation and Reasonableness . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
End of Chapter Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
IBL Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
11
Length
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
11.1 Importance of Length Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 155
11.2 Length Units
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
11.3 Length Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
11.3.1 Trigonometry Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
11.3.2 Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
11.4 Important Engineering Parameters of Length . . . . . . . . . . . . . . . . 164
11.4.1 Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
11.4.2 Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Contents
xvi
11.4.3 Second Moment of Area . . . . . . . . . . . . . . . . . . . . . . . . . . 169
End of Chapter Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
IBL Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
12
Time
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
12.1 Importance of Time Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
12.2 Measurement of Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
12.3 Steady Versus Unsteady State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
12.4 Period and Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
12.5 Length and Time Engineering Variables . . . . . . . . . . . . . . . . . . . . 179
End of Chapter Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
IBL Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
13
Mass
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
13.1 Importance of Mass Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
13.2 Measurement of Mass Versus Weight . . . . . . . . . . . . . . . . . . . . . . 190
13.3 Density, Specific Volume, and Specific Gravity . . . . . . . . . . . . . . 193
13.4 Mass Moment of Inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
13.5 Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
13.6 Mass Flow Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
13.7 Conservation of Mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
End of Chapter Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
IBL Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
14
Force
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
14.1 Importance and Categories of Forces . . . . . . . . . . . . . . . . . . . . . . . 204
14.2 Tendencies of Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
14.3 Force Units and Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
14.4 Force Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
14.5 Force Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
14.5.1 Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
14.5.2 Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
14.5.3 Torque and Moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
14.5.4 Mechanical Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
14.5.5 Linear Impulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
14.6 Free Body Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
End of Chapter Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
IBL Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Contents
xvii
15
Temperature
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
15.1 Importance of Temperature Parameters . . . . . . . . . . . . . . . . . . . . . 235
15.2 Measure of Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
15.3 Heat Transfer and Temperature Difference . . . . . . . . . . . . . . . . . . 239
15.4 Conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
15.5 Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
15.6 Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
15.7 Temperature-Related Material Properties . . . . . . . . . . . . . . . . . . . 246
End of Chapter Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
IBL Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
16
Electric Current
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
16.1 Importance of Electric Current and Parameters . . . . . . . . . . . . . . . 254
16.2 Measurements of Current, Voltage, and Potential . . . . . . . . . . . . . 255
16.3 DC and AC Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
16.4 Resistors and Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
16.5 Simple Circuits and Circuit Power. . . . . . . . . . . . . . . . . . . . . . . . . 262
End of Chapter Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
IBL Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
17
Energy, Power, and Efficiency
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
17.1 Importance of Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
17.2 Category of Energy I: Mechanical Energy
. . . . . . . . . . . . . . . . . . . 274
17.3 Conservation of Mechanical Energy . . . . . . . . . . . . . . . . . . . . . . . 277
17.4 Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
17.5 Category of Energy II: Thermal Energy . . . . . . . . . . . . . . . . . . . . 279
17.6 Category of Energy III: Chemical Energy . . . . . . . . . . . . . . . . . . . 281
17.7 First and Second Law of Thermodynamics . . . . . . . . . . . . . . . . . . 282
17.8 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
17.9 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
End of Chapter Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
IBL Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
18
Mathematics, Models, and Reasoning
. . . . . . . . . . . . . . . . . . . . . . . . . . 289
18.1 Mathematical Symbols and Variables . . . . . . . . . . . . . . . . . . . . . . 290
18.2 Introduction to Mathematical Models . . . . . . . . . . . . . . . . . . . . . . 290
18.3 Linear Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
18.4 Power Law and Polynomial Models . . . . . . . . . . . . . . . . . . . . . . . 296
Contents
xviii
18.5 Exponential and Logarithmic Models . . . . . . . . . . . . . . . . . . . . . . 297
18.6 Useful Math Strategies Using Linear Models . . . . . . . . . . . . . . . . 301
18.7 Turning Words into Math . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
End of Chapter Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
IBL Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Index
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Contents
xix
About the Author
Michelle Blum
earned dual B.S. degrees in Physics and Mechanical Engineering from the State University at Albany and Rensselaer Polytechnic Institute before going on to earn her masters and Ph.D. degrees from the University of Notre Dame. She is currently an Associate Teaching Professor, Director of the Mechanical Engineering Undergraduate Program and Dean’s Faculty Fellow for Assessment at the highly rated R1 institution, Syracuse University in New York. She has focused on teaching and engineering education for almost a decade and has taught multiple classes across mechanical and aerospace engineering undergraduate curriculums, ranging across all levels. She is deeply passionate about providing students with educational material that enables them to learn by actively engaging with course content, as well as creating streamlined materials for instructors. For her teaching, she has received numerous awards including the 2016 Syracuse University Laura J. and L. Douglas Meredith Professorship Teaching Award, 2017 TACNY College Educator of the Year, 2017 SU Dean’s Award for Excellence in Engineering Education, and the 2018 The Filtertech, Pi Tau Sigma, and Sigma Gamma Tau Award for Excellence in Education in Mechanical and Aerospace Engineering. She has been serving as an ABET Program Evaluator for ASME, evaluating mechanical engineering B.S. programs since 2021. For her assessment work the Mechanical Engineering B.S. program at Syracuse earned a One University Assessment Award for Outstanding Assessment in 2022.
Part I
Being an Effective Student
Langues : Anglais (eng) Résumé : The text introduces engineering to first-year undergraduate students using Inquiry-Based Learning (IBL). It draws on several different inquiry-based instruction types such as confirmation inquiry, structured inquiry, guided inquiry, and open inquiry, and all of their common elements. Professor Blum’s approach emphasizes the student’s role in the learning process, empowering them in the classroom to explore the material, ask questions, and share ideas, instead of the instructor lecturing to passive learners about what they need to know. Beginning with a preface to IBL, the book is organized into three parts, each consisting of four to ten chapters. Each chapter has a dedicated topic where an initial few paragraphs of introductory or fundamental material are provided. This is followed by a series of focused questions that guide the students’ learning about the concept(s) being taught. Featuring multiple inquiry-based strategies, each most appropriate to the topic, An Inquiry-Based Approach to Introduction to Engineering stands as an easy to use textbook that quickly allows students to actively engage with the content during every class period. An Inquiry-Based Introduction to Engineering [texte imprimé] / Michelle Blum, Auteur . - Switzerlan, Switzerlan : Springer, 2022 . - 316 p : couv.ill.fig.tab.ind ; 24.5x16 cm.
ISBN : 978-3-030-91470-7 : 16 500,00 DA
xiii
Contents
Part I Being an Effective Student
1
Achieving Success in Engineering
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Setting Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Changing Attitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Changing Effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Changing Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Extracurricular and Student Involvement Opportunities . . . . . . . . . 8
1.6 Information to Know . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7 Develop a Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
End of Chapter Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
IBL Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2
Teaching and Learning Approaches
. . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 Teaching Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Learning Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Improving the Learning Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
End of Chapter Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
IBL Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3
Essential Skills for Learning
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1 Semester and Course Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Lecture Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Learning During Lecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Reading to Learn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Preparing for Exams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6 Successfully Taking Exams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.7 Time Organization and Management . . . . . . . . . . . . . . . . . . . . . . . . 36
xiv
3.8 The Student/Professor Relationship . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.9 Working with Your Peers and in Teams . . . . . . . . . . . . . . . . . . . . . . 40
3.10 Benefits of Institutional Resources . . . . . . . . . . . . . . . . . . . . . . . . . 42
End of Chapter Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
IBL Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4
Understanding Yourself and Others
. . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1 Understanding Yourself . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Understanding Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Personal Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
End of Chapter Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
IBL Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Part II The Engineering Profession
5
The Engineering Profession
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1 Engineering Disciplines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Engineering Societies
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3 Engineering Degrees and Registrations . . . . . . . . . . . . . . . . . . . . . . 62
5.4 ABET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.5 Engineering Employment Opportunities and Functions . . . . . . . . . 66
End of Chapter Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
IBL Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6
Engineering Problem-Solving
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.1 Types of Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Problem-Solving Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3 Problem-Solving Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
End of Chapter Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
IBL Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7
Engineering Design and Experiments
. . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.1 The Engineering Design Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2 Experimental Design Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
End of Chapter Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
IBL Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Contents
xv
8
Engineering Ethics
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.1 Making Ethical Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.2 Ethics as a Student . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.3 Ethics as an Engineer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
End of Chapter Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
IBL Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
9
Engineering Communications
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
9.1 Written Communication 1: Technical Writing . . . . . . . . . . . . . . . . . 91
9.2 Written Communication 2: Professional Writing . . . . . . . . . . . . . . 96
9.3 Visual Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.4 Oral Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9.5 Team Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
End of Chapter Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
IBL Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Part III Engineering Fundamental Parameters
10
Dimensions and Units
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
10.1 Fundamental Dimensions and Units . . . . . . . . . . . . . . . . . . . . . . . 133
10.2 Primary and Secondary Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
10.2.1 Primary Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
10.2.2 Secondary Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
10.3 Dimensional Analysis and Homogeneity . . . . . . . . . . . . . . . . . . . . 137
10.4 Unit Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
10.5 Significant Digits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
10.6 Scientific Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
10.7 Estimation and Reasonableness . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
End of Chapter Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
IBL Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
11
Length
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
11.1 Importance of Length Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 155
11.2 Length Units
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
11.3 Length Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
11.3.1 Trigonometry Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
11.3.2 Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
11.4 Important Engineering Parameters of Length . . . . . . . . . . . . . . . . 164
11.4.1 Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
11.4.2 Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Contents
xvi
11.4.3 Second Moment of Area . . . . . . . . . . . . . . . . . . . . . . . . . . 169
End of Chapter Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
IBL Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
12
Time
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
12.1 Importance of Time Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
12.2 Measurement of Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
12.3 Steady Versus Unsteady State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
12.4 Period and Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
12.5 Length and Time Engineering Variables . . . . . . . . . . . . . . . . . . . . 179
End of Chapter Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
IBL Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
13
Mass
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
13.1 Importance of Mass Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
13.2 Measurement of Mass Versus Weight . . . . . . . . . . . . . . . . . . . . . . 190
13.3 Density, Specific Volume, and Specific Gravity . . . . . . . . . . . . . . 193
13.4 Mass Moment of Inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
13.5 Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
13.6 Mass Flow Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
13.7 Conservation of Mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
End of Chapter Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
IBL Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
14
Force
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
14.1 Importance and Categories of Forces . . . . . . . . . . . . . . . . . . . . . . . 204
14.2 Tendencies of Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
14.3 Force Units and Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
14.4 Force Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
14.5 Force Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
14.5.1 Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
14.5.2 Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
14.5.3 Torque and Moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
14.5.4 Mechanical Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
14.5.5 Linear Impulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
14.6 Free Body Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
End of Chapter Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
IBL Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Contents
xvii
15
Temperature
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
15.1 Importance of Temperature Parameters . . . . . . . . . . . . . . . . . . . . . 235
15.2 Measure of Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
15.3 Heat Transfer and Temperature Difference . . . . . . . . . . . . . . . . . . 239
15.4 Conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
15.5 Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
15.6 Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
15.7 Temperature-Related Material Properties . . . . . . . . . . . . . . . . . . . 246
End of Chapter Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
IBL Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
16
Electric Current
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
16.1 Importance of Electric Current and Parameters . . . . . . . . . . . . . . . 254
16.2 Measurements of Current, Voltage, and Potential . . . . . . . . . . . . . 255
16.3 DC and AC Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
16.4 Resistors and Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
16.5 Simple Circuits and Circuit Power. . . . . . . . . . . . . . . . . . . . . . . . . 262
End of Chapter Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
IBL Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
17
Energy, Power, and Efficiency
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
17.1 Importance of Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
17.2 Category of Energy I: Mechanical Energy
. . . . . . . . . . . . . . . . . . . 274
17.3 Conservation of Mechanical Energy . . . . . . . . . . . . . . . . . . . . . . . 277
17.4 Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
17.5 Category of Energy II: Thermal Energy . . . . . . . . . . . . . . . . . . . . 279
17.6 Category of Energy III: Chemical Energy . . . . . . . . . . . . . . . . . . . 281
17.7 First and Second Law of Thermodynamics . . . . . . . . . . . . . . . . . . 282
17.8 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
17.9 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
End of Chapter Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
IBL Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
18
Mathematics, Models, and Reasoning
. . . . . . . . . . . . . . . . . . . . . . . . . . 289
18.1 Mathematical Symbols and Variables . . . . . . . . . . . . . . . . . . . . . . 290
18.2 Introduction to Mathematical Models . . . . . . . . . . . . . . . . . . . . . . 290
18.3 Linear Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
18.4 Power Law and Polynomial Models . . . . . . . . . . . . . . . . . . . . . . . 296
Contents
xviii
18.5 Exponential and Logarithmic Models . . . . . . . . . . . . . . . . . . . . . . 297
18.6 Useful Math Strategies Using Linear Models . . . . . . . . . . . . . . . . 301
18.7 Turning Words into Math . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
End of Chapter Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
IBL Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Index
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Contents
xix
About the Author
Michelle Blum
earned dual B.S. degrees in Physics and Mechanical Engineering from the State University at Albany and Rensselaer Polytechnic Institute before going on to earn her masters and Ph.D. degrees from the University of Notre Dame. She is currently an Associate Teaching Professor, Director of the Mechanical Engineering Undergraduate Program and Dean’s Faculty Fellow for Assessment at the highly rated R1 institution, Syracuse University in New York. She has focused on teaching and engineering education for almost a decade and has taught multiple classes across mechanical and aerospace engineering undergraduate curriculums, ranging across all levels. She is deeply passionate about providing students with educational material that enables them to learn by actively engaging with course content, as well as creating streamlined materials for instructors. For her teaching, she has received numerous awards including the 2016 Syracuse University Laura J. and L. Douglas Meredith Professorship Teaching Award, 2017 TACNY College Educator of the Year, 2017 SU Dean’s Award for Excellence in Engineering Education, and the 2018 The Filtertech, Pi Tau Sigma, and Sigma Gamma Tau Award for Excellence in Education in Mechanical and Aerospace Engineering. She has been serving as an ABET Program Evaluator for ASME, evaluating mechanical engineering B.S. programs since 2021. For her assessment work the Mechanical Engineering B.S. program at Syracuse earned a One University Assessment Award for Outstanding Assessment in 2022.
Part I
Being an Effective Student
Langues : Anglais (eng)
Résumé : The text introduces engineering to first-year undergraduate students using Inquiry-Based Learning (IBL). It draws on several different inquiry-based instruction types such as confirmation inquiry, structured inquiry, guided inquiry, and open inquiry, and all of their common elements. Professor Blum’s approach emphasizes the student’s role in the learning process, empowering them in the classroom to explore the material, ask questions, and share ideas, instead of the instructor lecturing to passive learners about what they need to know. Beginning with a preface to IBL, the book is organized into three parts, each consisting of four to ten chapters. Each chapter has a dedicated topic where an initial few paragraphs of introductory or fundamental material are provided. This is followed by a series of focused questions that guide the students’ learning about the concept(s) being taught. Featuring multiple inquiry-based strategies, each most appropriate to the topic, An Inquiry-Based Approach to Introduction to Engineering stands as an easy to use textbook that quickly allows students to actively engage with the content during every class period. Réservation
Réserver ce document
Exemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 23/323169 L/620.093 Livre Bibliothèque Science et Technologie indéterminé Exclu du prêt 23/323170 L/620.093 Livre Bibliothèque Science et Technologie indéterminé Disponible 23/323171 L/620.093 Livre Bibliothèque Science et Technologie indéterminé Disponible
Titre : Artificial Intelligence for 6G Type de document : texte imprimé Auteurs : Haesik Kim, Auteur Mention d'édition : 1st éd Editeur : Springer Année de publication : 2022 Importance : 541 p Format : 24 x 16 cm ISBN/ISSN/EAN : 978-3-030-95040-8 Prix : 24 700,00 DA Note générale : Part I: Artificial Intelligence Techniques.- Chapter 1. Historical Sketch of Artificial Intelligence.- Chapter 2. Unsupervised Learning.- Chapter 3. Supervised Learning.- Chapter 4. Gradient Descent.- Chapter 5. Reinforcement Learning.- Chapter 6. Deep Learning.- Part II: Artificial Intelligence Enabled Techniques for 6G.- Chapter 7. Artificial Intelligence and 6G.- Chapter 8. AI for Big Data.- Chapter 9. AI Enabled Wireless Communications.- Chapter 10. AI Enabled Networks.- Chapter 11. AI Empowered Mobile Applications. Langues : Anglais (eng) Index. décimale : 621 - Physique appliquée Résumé : This textbook introduces Artificial Intelligence (AI) techniques for wireless communications and networks, helping readers to find solutions for communications and network problems using AI.
Artificial Intelligence for 6G introduces, in a step-by-step manner, AI techniques such as:
unsupervised learning;
supervised learning;
reinforcement learning; and
deep learning.
It explains how these techniques can be used for wireless communications and network systems, particularly in designing and optimizing 6G networks.
This book is at the forefront of 6G research, and will be of interest internationally, to graduate students, academics, engineers, and developers who are focused on future development of network systems and mobile communications.Artificial Intelligence for 6G [texte imprimé] / Haesik Kim, Auteur . - 1st éd . - Switzerlan, Switzerlan : Springer, 2022 . - 541 p ; 24 x 16 cm.
ISBN : 978-3-030-95040-8 : 24 700,00 DA
Part I: Artificial Intelligence Techniques.- Chapter 1. Historical Sketch of Artificial Intelligence.- Chapter 2. Unsupervised Learning.- Chapter 3. Supervised Learning.- Chapter 4. Gradient Descent.- Chapter 5. Reinforcement Learning.- Chapter 6. Deep Learning.- Part II: Artificial Intelligence Enabled Techniques for 6G.- Chapter 7. Artificial Intelligence and 6G.- Chapter 8. AI for Big Data.- Chapter 9. AI Enabled Wireless Communications.- Chapter 10. AI Enabled Networks.- Chapter 11. AI Empowered Mobile Applications.
Langues : Anglais (eng)
Index. décimale : 621 - Physique appliquée Résumé : This textbook introduces Artificial Intelligence (AI) techniques for wireless communications and networks, helping readers to find solutions for communications and network problems using AI.
Artificial Intelligence for 6G introduces, in a step-by-step manner, AI techniques such as:
unsupervised learning;
supervised learning;
reinforcement learning; and
deep learning.
It explains how these techniques can be used for wireless communications and network systems, particularly in designing and optimizing 6G networks.
This book is at the forefront of 6G research, and will be of interest internationally, to graduate students, academics, engineers, and developers who are focused on future development of network systems and mobile communications.Réservation
Réserver ce document
Exemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 23/323182 L/006.050 Livre Bibliothèque Science et Technologie indéterminé Exclu du prêt 23/323183 L/006.050 Livre Bibliothèque Science et Technologie indéterminé Disponible
Titre : Computational Electronic Circuits : Simulation and Analysis with MATLAB Type de document : texte imprimé Auteurs : Sotoudeh Hamedi-Hagh, Auteur Mention d'édition : 1st éd Editeur : Springer Année de publication : 2022 Importance : 431 p Présentation : couv.illi.tab.shém.ind. Format : 24 x 15.5 cm ISBN/ISSN/EAN : 978-3-030-75570-6 Prix : 13 700,00 DA Note générale : Framework
Sotoudeh Hamedi-Hagh
Pages 1-69
DC Analysis
Sotoudeh Hamedi-Hagh
Pages 71-118
Transient Analysis
Sotoudeh Hamedi-Hagh
Pages 119-193
AC Analysis
Sotoudeh Hamedi-Hagh
Pages 195-336
Noise Analysis
Sotoudeh Hamedi-Hagh
Pages 337-390
Behavioral Analysis
Sotoudeh Hamedi-Hagh
Pages 391-421
Back Matter
Pages 423-431Langues : Anglais (eng) Index. décimale : 621 - Physique appliquée Résumé : This textbook teaches in one, coherent presentation the three distinct topics of analysis of electronic circuits, mathematical numerical algorithms and coding in a software such as MATLAB®. By combining the capabilities of circuit simulators and mathematical software, the author teaches key concepts of circuit analysis and algorithms, using a modern approach. The DC, Transient, AC, Noise and behavioral analyses are implemented in MATLAB to study the complete characteristics of a variety of electronic circuits, such as amplifiers, rectifiers, hysteresis circuits, harmonic traps and passes, polyphaser filters, directional couplers, electro-static discharge and piezoelectric crystals. This book teaches basic and advanced circuit analysis, by incorporating algorithms and simulations that teach readers how to develop their own simulators and fully characterize and design electronic circuits.
Teaches students and practitioners DC, AC, Transient, Noise and Behavioral analyses using MATLAB;
Shows readers how to create their own complete simulator in MATLAB by adding materials learned in all 6 chapters of the book;
Balances theory, math and analysis;
Introduces many examples such as noise minimization, parameter optimization, power splitters, harmonic traps and passes, directional couplers, polyphase filters and electro-static discharge that are hardly referenced in other textbooks;
Teaches how to create the fundamental analysis functions such as linear and nonlinear equation solvers, determinant calculation, random number generation and Fast Fourier transformation rather than using the built-in native MATLAB codes.Computational Electronic Circuits : Simulation and Analysis with MATLAB [texte imprimé] / Sotoudeh Hamedi-Hagh, Auteur . - 1st éd . - Switzerlan, Switzerlan : Springer, 2022 . - 431 p : couv.illi.tab.shém.ind. ; 24 x 15.5 cm.
ISBN : 978-3-030-75570-6 : 13 700,00 DA
Framework
Sotoudeh Hamedi-Hagh
Pages 1-69
DC Analysis
Sotoudeh Hamedi-Hagh
Pages 71-118
Transient Analysis
Sotoudeh Hamedi-Hagh
Pages 119-193
AC Analysis
Sotoudeh Hamedi-Hagh
Pages 195-336
Noise Analysis
Sotoudeh Hamedi-Hagh
Pages 337-390
Behavioral Analysis
Sotoudeh Hamedi-Hagh
Pages 391-421
Back Matter
Pages 423-431
Langues : Anglais (eng)
Index. décimale : 621 - Physique appliquée Résumé : This textbook teaches in one, coherent presentation the three distinct topics of analysis of electronic circuits, mathematical numerical algorithms and coding in a software such as MATLAB®. By combining the capabilities of circuit simulators and mathematical software, the author teaches key concepts of circuit analysis and algorithms, using a modern approach. The DC, Transient, AC, Noise and behavioral analyses are implemented in MATLAB to study the complete characteristics of a variety of electronic circuits, such as amplifiers, rectifiers, hysteresis circuits, harmonic traps and passes, polyphaser filters, directional couplers, electro-static discharge and piezoelectric crystals. This book teaches basic and advanced circuit analysis, by incorporating algorithms and simulations that teach readers how to develop their own simulators and fully characterize and design electronic circuits.
Teaches students and practitioners DC, AC, Transient, Noise and Behavioral analyses using MATLAB;
Shows readers how to create their own complete simulator in MATLAB by adding materials learned in all 6 chapters of the book;
Balances theory, math and analysis;
Introduces many examples such as noise minimization, parameter optimization, power splitters, harmonic traps and passes, directional couplers, polyphase filters and electro-static discharge that are hardly referenced in other textbooks;
Teaches how to create the fundamental analysis functions such as linear and nonlinear equation solvers, determinant calculation, random number generation and Fast Fourier transformation rather than using the built-in native MATLAB codes.Réservation
Réserver ce document
Exemplaires (4)
Code-barres Cote Support Localisation Section Disponibilité 23/323200 L/621.1409 Livre Bibliothèque Science et Technologie indéterminé Exclu du prêt 23/323201 L/621.1409 Livre Bibliothèque Science et Technologie indéterminé Disponible 23/323202 L/621.1409 Livre Bibliothèque Science et Technologie indéterminé Disponible 23/323203 L/621.1409 Livre Bibliothèque Science et Technologie indéterminé Disponible
Titre : Remote Sensing Digital Image Analysis Type de document : texte imprimé Auteurs : John A. Richards, Auteur Mention d'édition : 6th ed Editeur : Springer Année de publication : 2022 Importance : 567 P Présentation : couv.illi.fig.tab.ind Format : 23.5×15.5 cm ISBN/ISSN/EAN : 978-3-030-82329-0 Prix : 15,300.00 Note générale : - Sources and characteristics of remote sensing image data.
- correcting and registering images.
- interpreting images.
- radiometric enhancement of images.
- geometric processing and enhancement: image domain techniques.
- spectral domain image transforms.
- spatial domain image transforms.
- supervised classification techniques.
- clustering and unsupervised classification.
- Feature Reduction.
- Image Classification in Practice.
- Multisource Image Analysis.Langues : Anglais (eng) Index. décimale : 621 Physique appliquée Résumé : Remote Sensing Digital Image Analysis provides a comprehensive treatment of the methods used for the processing and interpretation of remotely sensed image data. Over the past decade there have been continuing and significant developments in the algorithms used for the analysis of remote sensing imagery, even though many of the fundamentals have substantially remained the same. As with its predecessors this new edition again presents material that has retained value but also includes newer techniques, covered from the perspective of operational remote sensing.
The book is designed as a teaching text for the senior undergraduate and postgraduate student, and as a fundamental treatment for those engaged in research using digital image analysis in remote sensing. The presentation level is for the mathematical non-specialist. Since the very great number of operational users of remote sensing come from the earth sciences communities, the text is pitched at a level commensurate with their background.
The chapters progress logically through means for the acquisition of remote sensing images, techniques by which they can be corrected, and methods for their interpretation. The prime focus is on applications of the methods, so that worked examples are included and a set of problems conclude each chapter.Remote Sensing Digital Image Analysis [texte imprimé] / John A. Richards, Auteur . - 6th ed . - Switzerlan, Switzerlan : Springer, 2022 . - 567 P : couv.illi.fig.tab.ind ; 23.5×15.5 cm.
ISBN : 978-3-030-82329-0 : 15,300.00
- Sources and characteristics of remote sensing image data.
- correcting and registering images.
- interpreting images.
- radiometric enhancement of images.
- geometric processing and enhancement: image domain techniques.
- spectral domain image transforms.
- spatial domain image transforms.
- supervised classification techniques.
- clustering and unsupervised classification.
- Feature Reduction.
- Image Classification in Practice.
- Multisource Image Analysis.
Langues : Anglais (eng)
Index. décimale : 621 Physique appliquée Résumé : Remote Sensing Digital Image Analysis provides a comprehensive treatment of the methods used for the processing and interpretation of remotely sensed image data. Over the past decade there have been continuing and significant developments in the algorithms used for the analysis of remote sensing imagery, even though many of the fundamentals have substantially remained the same. As with its predecessors this new edition again presents material that has retained value but also includes newer techniques, covered from the perspective of operational remote sensing.
The book is designed as a teaching text for the senior undergraduate and postgraduate student, and as a fundamental treatment for those engaged in research using digital image analysis in remote sensing. The presentation level is for the mathematical non-specialist. Since the very great number of operational users of remote sensing come from the earth sciences communities, the text is pitched at a level commensurate with their background.
The chapters progress logically through means for the acquisition of remote sensing images, techniques by which they can be corrected, and methods for their interpretation. The prime focus is on applications of the methods, so that worked examples are included and a set of problems conclude each chapter.Réservation
Réserver ce document
Exemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 23/323244 L/621.1413 Livre Bibliothèque Science et Technologie indéterminé Exclu du prêt 23/323245 L/621.1413 Livre Bibliothèque Science et Technologie indéterminé Disponible 23/323246 L/621.1413 Livre Bibliothèque Science et Technologie indéterminé Disponible PermalinkPermalinkPermalink