Titre : |
Initiation a l'analyse complexe |
Titre original : |
cours et exercices corrigés |
Type de document : |
texte imprimé |
Auteurs : |
Giroux André |
Editeur : |
Paris [France] : Ellipses |
Année de publication : |
2015 |
Importance : |
235p |
Format : |
24x19 cm |
ISBN/ISSN/EAN : |
978-2-340-00365-1 |
Langues : |
Français (fre) Langues originales : Français (fre) |
Index. décimale : |
515 Analyse |
Résumé : |
Cet ouvrage présente, sans autre connaissance préalable pour le lecteur qu'une certaine familiarité avec l'analyse mathématique, l'essentiel de la théorie de la mesure et l'intégration. Il conviendra donc aux étudiants de niveau universitaire de licence, tant en mathématiques qu'en statistique, ainsi qu'aux futurs ingénieurs. Après quelques rappels sur l'intégrale de Riemann, on y expose la théorie de la mesure et de l'intégrale de Lebesgue. Pour des motifs pédagogiques, la théorie est d'abord développée sur l'axe réel puis généralisée à des espaces plus abstraits. On y traite d'ensembles et de fonctions mesurables, de mesures positives et signées, d'intégration, de construction de mesure (en particulier, celles de Lebesgue-Stieltjes), des divers modes de convergence, des espaces de Lebesgue, des mesures produit et du théorème de Fubini (avec la formule de changements de variables dans les intégrales multiples), des fonctions à variation bornée ou absolument continues et on conclut en présentant des applications à l'analyse de Fourier. Le ton est informel mais le traitement est mathématiquement rigoureux. De nombreux exercices, accompagnés de leur solution, permettront au lecteur de bien assimiler le sujet. |
Initiation a l'analyse complexe = cours et exercices corrigés [texte imprimé] / Giroux André . - Paris (France) : Ellipses, 2015 . - 235p ; 24x19 cm. ISBN : 978-2-340-00365-1 Langues : Français ( fre) Langues originales : Français ( fre)
Index. décimale : |
515 Analyse |
Résumé : |
Cet ouvrage présente, sans autre connaissance préalable pour le lecteur qu'une certaine familiarité avec l'analyse mathématique, l'essentiel de la théorie de la mesure et l'intégration. Il conviendra donc aux étudiants de niveau universitaire de licence, tant en mathématiques qu'en statistique, ainsi qu'aux futurs ingénieurs. Après quelques rappels sur l'intégrale de Riemann, on y expose la théorie de la mesure et de l'intégrale de Lebesgue. Pour des motifs pédagogiques, la théorie est d'abord développée sur l'axe réel puis généralisée à des espaces plus abstraits. On y traite d'ensembles et de fonctions mesurables, de mesures positives et signées, d'intégration, de construction de mesure (en particulier, celles de Lebesgue-Stieltjes), des divers modes de convergence, des espaces de Lebesgue, des mesures produit et du théorème de Fubini (avec la formule de changements de variables dans les intégrales multiples), des fonctions à variation bornée ou absolument continues et on conclut en présentant des applications à l'analyse de Fourier. Le ton est informel mais le traitement est mathématiquement rigoureux. De nombreux exercices, accompagnés de leur solution, permettront au lecteur de bien assimiler le sujet. |
| |