BIBLIOTHEQUE CENTRALE
Détail de l'auteur
Auteur Dreyfus Gérars |
Documents disponibles écrits par cet auteur
Affiner la recherche Interroger des sources externes
Apprentissage statistique / Dreyfus Gérars
Titre : Apprentissage statistique Type de document : texte imprimé Auteurs : Dreyfus Gérars Editeur : Eyrolles Année de publication : 2008 Importance : 449 p Format : 23×17 cm ISBN/ISSN/EAN : 978-2-212-12229-9 Langues : Français (fre) Index. décimale : 621 Physique appliquée Résumé : L'apprentissage statistique permet la mise au point de modèles de données et de processus lorsque la formalisation de règles explicites serait impossible: reconnaissance de formes ou de signaux, prévision, fouille de données, prise de décision en environnement complexe et évolutif. Ses applications sont multiples dans le monde de la production industrielle (robotique, maintenance préventive, développement de capteurs virtuels, planification d'expériences, aide à la conception de produits), dans le domaine de la biologie et de la santé (aide au diagnostic, aide à la découverte de médicaments, bio-informatique), en télécommunications, en marketing et finance, et dans bien d'autres domaines. Sans omettre de rappeler les fondements théoriques de l'apprentissage statistique, cet ouvrage offre de solides bases méthodologiques à tout ingénieur ou chercheur soucieux d'exploiter ses données. Il en présente les algorithmes les plus couramment utilisés - réseaux de neurones, cartes topologiques, machines à vecteurs supports, modèles de Markov cachés - à l'aide d'exemples et d'études de cas industriels, financiers ou bancaires. Cet ouvrage est la mise à jour du livre Réseaux de neurones - Méthodologie et applications. A qui s'adresse ce livre ? Aux ingénieurs, chercheurs et décideurs ayant à résoudre des problèmes de modélisation, de reconnaissance, de prévision, de commande, etc. Aux étudiants et élèves ingénieurs des disciplines scientifiques et économiques, et à leurs enseignants. Apprentissage statistique [texte imprimé] / Dreyfus Gérars . - Paris : Eyrolles, 2008 . - 449 p ; 23×17 cm.
ISBN : 978-2-212-12229-9
Langues : Français (fre)
Index. décimale : 621 Physique appliquée Résumé : L'apprentissage statistique permet la mise au point de modèles de données et de processus lorsque la formalisation de règles explicites serait impossible: reconnaissance de formes ou de signaux, prévision, fouille de données, prise de décision en environnement complexe et évolutif. Ses applications sont multiples dans le monde de la production industrielle (robotique, maintenance préventive, développement de capteurs virtuels, planification d'expériences, aide à la conception de produits), dans le domaine de la biologie et de la santé (aide au diagnostic, aide à la découverte de médicaments, bio-informatique), en télécommunications, en marketing et finance, et dans bien d'autres domaines. Sans omettre de rappeler les fondements théoriques de l'apprentissage statistique, cet ouvrage offre de solides bases méthodologiques à tout ingénieur ou chercheur soucieux d'exploiter ses données. Il en présente les algorithmes les plus couramment utilisés - réseaux de neurones, cartes topologiques, machines à vecteurs supports, modèles de Markov cachés - à l'aide d'exemples et d'études de cas industriels, financiers ou bancaires. Cet ouvrage est la mise à jour du livre Réseaux de neurones - Méthodologie et applications. A qui s'adresse ce livre ? Aux ingénieurs, chercheurs et décideurs ayant à résoudre des problèmes de modélisation, de reconnaissance, de prévision, de commande, etc. Aux étudiants et élèves ingénieurs des disciplines scientifiques et économiques, et à leurs enseignants. Réservation
Réserver ce document
Exemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 09/139056 L/621.823 Livre Bibliothèque Centrale indéterminé Exclu du prêt 18/308384 L/621.823 Livre Bibliothèque Centrale indéterminé Disponible 18/308385 L/621.823 Livre Bibliothèque Centrale indéterminé Disponible